\qquad

Date \qquad

Advanced Algebra
Unit 6 Linear Programming Assignment \#12

Learning Targets with Matrices	Self Assessment
I can identify the dimensions of a matrix	
I can add or subtract	
I can multiply by a scalar	
I can multiply any matrix	
I can arrange a systems of equations into a matrix representation	
I can use proper notation to show how to solve A matrix system	
I can find the inverse of a 2 by 2 matrix by hand	
I can find the inverse of a 2 by 2 matrix with the given formula	
I can solve a 2 by2 matrix system correctly	
I can SHOW how to solve any matrix system with proper notation	

Important NOTE $[A]^{*}[A]^{-1}=$ the identity matrix which is $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Solve the following Linear equations by showing the proper Inverse notation:

1) $4 x=8$
2) $\frac{1}{3} x=25$
3) $7 x=921$

For the Following Problems, show with the proper notation of how to solve the following matrix equations.
4) $\left[\begin{array}{ll}4 & 5 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}16 & 2 \\ 4 & 12\end{array}\right]$
5) $\left[\begin{array}{cc}12 & 5 \\ 4 & 2\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
6) $\left[\begin{array}{cc}-2 & 4 \\ 6 & 3\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}5 & 6 \\ 2 & 10\end{array}\right]$
7) $\left[\begin{array}{cc}5 & -8 \\ 2 & 1\end{array}\right] \quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}9 & 2 \\ 1 & 4\end{array}\right]$

For the following problems, arrange the given $\mathbf{2}$ by $\mathbf{2}$ system into a matrix arrangement.
8) $2 x+y=11$
9) $x+y=1$
$3 x-2 y=6$
$2 x+y=5$
10) $x+y=10$
11) $x-4 y=20$
$x-y=6$

$$
2 x+5 y=1
$$

For the following problems find the Inverse of the given 2 by 2
12) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] *\left[\begin{array}{cc}1 & -4 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
13) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] *\left[\begin{array}{cc}-1 & 1 \\ 2 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

For problems 14 and 15 put it all together. Show with proper notation and work how to solve the above $\mathbf{2}$ by2 matrix systems.
14)
15)

