\qquad
\qquad
Advanced Algebra
Unit 1: Sequence and Series
Assignment \#4

LT: I can sum up a partial sums of an arithmetic series

Example:
$2+4+6+8+\cdots$ is an example of a arithmetic series. Notice how the terms are now separated by the addition signs instead of the commas. This is how you can identify the notation.

Find S_{8}. This is asking us to find the sum of the first 8 terms. Notice how we use the S when we are talking about a series. What do we use when we are talking about a sequence? \qquad
What is the difference between the two notations? \qquad

The formula for the partial sums of an Arithmetic Series is $\operatorname{Sn}=\frac{n(U 1+U n)}{2}$
So in the original example find S_{8}. Well $U_{1}=2$ and $U_{8}=16$ so $\frac{8(2+16)}{2}=72$

Find the sums of the given series

1) Given the series $3+6+9+\ldots$ Find S_{12}
2) Given the series $6+12+18+24+\ldots$ Find S_{14}
3) Given $U_{4}=14$ and $U_{8}=22$ Find S_{12}
4) Given $U_{3}=-15$ and $U 7=-27$ Find S_{10}
5) Find $\sum_{n=1}^{10} 3 x+5$
6)Find $\sum_{n=1}^{15}-2 x+8$
6) Given the following arithmetic sequence, Find S_{60}

$$
\left\{\begin{array}{c}
U_{1}=18 \\
U_{n}=U_{(n-1)}+4 \\
n \geq 2
\end{array}\right.
$$

8) Given the following arithmetic sequence, Find S52

$$
\left\{\begin{array}{c}
U_{1}=24 \\
U_{n}=U_{(n-1)}-6 \\
n \geq 2
\end{array}\right.
$$

Unit 1: Sequence and Series Homework:

1) Given $1+2+3+4+\ldots$ Find $\sum_{n=1}^{12} n$ (Write the recursive first, sum up the first 12 terms)
2) Find S_{10} given $2,6,10,14,18, \ldots$
3) Find $U 75$ if $U n=2 n-1$
4) $\operatorname{Find} \sum_{n=1}^{75}(2 n-1)$
5) Find $\sum_{n=20}^{75}(2 n-1)$ (Hint: Find S_{75} and subtract S_{19})
