Name_	
Date	

Advanced Algebra Unit 1: Sequence and Series Assignment #4

LT: I can sum up a partial sums of an arithmetic series

Example:

 $2+4+6+8+\cdots$ is an example of a arithmetic series. Notice how the terms are now separated by the addition signs instead of the commas. This is how you can identify the notation.

Find S₈. This is asking us to find the sum of the first 8 terms. Notice how we use the S when we are talking about a series. What do we use when we are talking about a sequence?

What is the difference between the two notations?_____

The formula for the partial sums of an Arithmetic Series is $Sn = \frac{n(U1+Un)}{2}$

So in the original example find S₈. Well U₁ = 2 and U₈ = 16 so $\frac{8(2+16)}{2}$ = 72

Find the sums of the given series

1) Given the series 3+6+9+... Find S_{12}

2) Given the series 6+12+18+24+... Find S₁₄

3) Given U_{4} = 14 and U_{8} = 22 Find S_{12}

- 4) Given $U_3 = -15$ and U7 = -27 Find S_{10}
- 5) Find $\sum_{n=1}^{10} 3x + 5$
- 6)Find $\sum_{n=1}^{15} -2x + 8$

7) Given the following arithmetic sequence, Find S_{60}

8) Given the following arithmetic sequence, rink box $\begin{cases}
U_1 = 18\\
U_n = U_{(n-1)} + 4\\
n \ge 2\\
U_1 = 24\\
U_n = U_{(n-1)} - 6\\
n \ge 2
\end{cases}$

Unit 1: Sequence and Series Homework:

- 1) Given 1+2+3+4+... Find $\sum_{n=1}^{12} n$ (Write the recursive first, sum up the first 12 terms)
- 2) Find S₁₀ given 2,6,10,14,18,...

3) Find U75 if Un= 2n-1

- 4) Find $\sum_{n=1}^{75} (2n-1)$
- 5) Find $\sum_{n=20}^{75} (2n-1)$ (Hint: Find S₇₅ and subtract S₁₉)