Unit 4

Quadratics

The Quadratic formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

The Discriminant: $\mathbf{b}^{\mathbf{2}} \mathbf{- 4 a c}$
The quantity that appears beneath the radical sign in the quadratic formula, $b^{2}-4 a c$, can tell you whether the roots of a quadratic equation are real or imaginary. $B^{\mathbf{2}} \mathbf{- 4 a c}$ is called the discriminant.

Given the quadratic equation $a x^{2}+b x+c=0$ where a, b, and c are real numbers
If $\mathrm{b}^{2}-4 \mathrm{ac}<0$, there are two conjugate imaginary roots
If $b^{2}-4 a c=0$, there is one real root called a double root
If $b^{2}-4 a c>0$, there are two different real roots

Example: Talk about the roots of $y=x^{2}-4$
$\mathrm{a}=1 \mathrm{~b}=0 \quad \mathrm{c}=-4$ so $\rightarrow 0^{2}-4(1)(-4) \rightarrow 16 \rightarrow$ Since this quantity is greater than 0 , there are 2 real roots
conjugate pair is in the form $(\mathbf{6 + 2 i})(\mathbf{6 - 2 i})$ It is made up of a real and imaginary number

