\qquad

Date \qquad

Unit 3: Exponential, Log, and Power Functions

Advanced Algebra
Inverse of Functions- Assignment \#7

I can find the inverse of a function. I can put functions in context.
 Note: To find an inverse of a function you 1) Switch the x and y variables 2) Solve for y

Example: Given $y=3 x+2$ Find the Inverse of the function

Use your calculator to fill in the table
$F(x)$

x	y
0	
1	
2	
3	

$f^{-1}(x)$ This is notation for Inverse

x	y

What do you notice about the table values? \qquad
So you can build an Inverse by switching the ordered pairs (x, y) to (y, x)
Now we will take 10 minutes to put an Inverse in context.
Context: Write a scenario as to what the function $\mathbf{y}=\mathbf{3 x + 2}$ could represent. Be specific. Say exactly what the input could represent in real life. What would the 2 represent? What would the value of y represent. Be specific.

Write what the Inverse of the given function would represent. Again be specific. What would the input be and what would the output be.

Now you write a linear function in the form $y=m x+b$. Put your function in context. Some ideas from previous units involved money. Imagine you are saving for something big. This could be one idea.

My function is \qquad

It represents \qquad

My Inverse of my function is \qquad

It would represent \qquad

Class Practice: Find the inverse of the following linear equations. Use your calculator to show the tables are reversed. Copy 4 entries for each problem.

1) $y=6-2 x$
2) $y=2-\frac{6}{x}$

x	y

3) $y=-6(x-2)$
4) $y=\frac{-6}{x-2}$

x	y

x	y

x	y

x	y

To do now in class: Find the inverse of the following functions.

1) $y=2 x-3$
2) $3 x+2 y=4$
3) $x^{2}+2 y=3$
4) $y=6+\frac{2}{x}$

Use a composition of functions strategy or making two tables to verify if the following functions are inverses of each other.
5) $f(x)=4 x-6 \quad$ and $g(x)=\frac{(x-6)}{4}$
6) $f(x)=3 x^{2}+2$ and $g(x)=\sqrt{\frac{(x-2)}{3}}$

