Name_____

Date_____

Unit 3: Exponential, Log, and Power Functions

Advanced Algebra

Inverse of Functions- Assignment #7

I can find the inverse of a function. I can put functions in context.

Note: To find an inverse of a function you 1) Switch the x and y variables 2) Solve for y

Example: Given y = 3x + 2 Find the Inverse of the function

Use your calculator to fill in the table

f⁻¹(x) This is notation for Inverse

х	у

x y 0 1 2 3

F(x)

What do you notice about the table values?_____

So you can build an Inverse by switching the ordered pairs (x,y) to (y,x)

Now we will take 10 minutes to put an Inverse in context.....

Context: Write a scenario as to what the function y = 3x + 2 could represent. Be specific. Say exactly what the input could represent in real life. What would the 2 represent? What would the value of y represent. Be specific.

Write what the Inverse of the given function would represent. Again be specific. What would the input be and what would the output be.

Now you write a linear function in the form y = mx+b. Put your function in context. Some ideas from previous units involved money. Imagine you are saving for something big. This could be one idea.

My function is _____

It represents_____

My Inverse of my function is _____

It would represent _____

Class Practice: Find the inverse of the following linear equations. Use your calculator to show the tables are reversed. Copy 4 entries for each problem.

3) v	=	-6	(x-2)
	/ /		U	~ ~ /

х	У	x	У

4) y =
$$\frac{-6}{x-2}$$

х	у	

у

To do now in class: Find the inverse of the following functions.

1)
$$y = 2x-3$$
 2) $3x + 2y = 4$

3)
$$x^2 + 2y = 3$$
 4) $y = 6 + \frac{2}{x}$

Use a composition of functions strategy or making two tables to verify if the following functions are inverses of each other.

5)
$$f(x) = 4x-6$$
 and $g(x) = \frac{(x-6)}{4}$

6)
$$f(x) = 3x^2 + 2$$
 and $g(x) = \sqrt{\frac{(x-2)}{3}}$