Name_____

Date_____

Focused Instruction Unit 2- Family of Functions

Learning Targets: This is an organized list of learning targets to help you prepare for the Unit Test. Please rank each topic using the provided scale.

If you are a low rank on a topic you should: look in your notes, do some research on the topic, look in <u>your green book in CHAPTER 4 page 172-236</u>, as a friend who has a higher rank on that topic than you, as a question to the teacher.

Term	Example #1	Example #2	Example #3	Example #4
l can define a	A function is a unique	I can describe		
function	relationship for which there	the vertical line		
Page 178	is only 1 output for each	test		
	input.			
I can decide if a				
function is				
increasing or	2			
decreasing as x				
values increase or				
decrease.				
Page 175 #3	-2 0 2			
	We read a graph from left			
	to right. So as x goes from			
	negative infinity to 0 the y			
	values on the graph are			
	decreasing. As x moves from			
	0 to positive infinity the y			
	values on the graph are			
	increasing.			

Rank yourself and make an example for each Learning target.

I can use the vertical line test Page 178 Extra problems that are good are on page 180 Investigation, 181 #1	-2 0 2 -2 0 2		
	If you draw vertical lines through the parabola the vertical line will only be touching the graph in 1 place. This means it passes the vertical line test and it is indeed a function.		
I can find the domain and range of a function given a graph You must know your parent graphs and the domain and range of these parent graphs. If you know these and your translations, you should be able to sketch a graph to find the new domain and range.	Domain is referring to x values and range is referring to the y values. So in the above graph we see the following: Domain: all real numbers Range : $y \ge 0$		
I can find the domain and range of a function given an equation	My example: y= 2(x-3) ² +18 I know that this is a quadratic graph. I know that the vertex is now at (3,18) I know that : D: all real numbers Range: y≥18		

I can evaluate a	f(x)= 4x-6		
function with	f(2) = 4(2) - 6 = 2		
function notation	So the input is 2 and the		
Notes and	output is 2		
Examples can be			
found on Page			
179			
Extra problems to			
be worked can be			
found on page			
Page 233 # 2			
I can do function	f(x) = 4x-5 and $g(x) = 6x$		
operationslike			
adding or	What is f(x) –g(x)		
subtracting 2	4x-5-(6x)		
functions	f(x)-g(x) = -2x-5		
You did			
homework on			
these.			
l can use	f(x) = a(x-h)+k		
translations rules	We are responsible in this		
to translate a	unit and here at Washburn		
function	for any class after this for		
We spent a lot of	knowing what the a,h,k		
class time on this	does to the graph.		
topic. You did a	a- Changes the initial		
	1-1 relationship of		
big graphing	-		
assignment. You	the graph.		
graphed all the translations of	h- moves the graph left		
	or right.		
the various	(x-h) moves the graph		
parent functions.	to the right		
Page 220	(x+h) moves the graph		
	to the left		
	K moves the graph up or		
	down.		

I can use translation rules to write the equation of a new function given the parent function Page 220			
	I see that this graph was shifted over 2 to the right from the parent graph . I know that this is a quadratic graph. So the new equation would be y=(x-2) ² +0		
I can do composition of a function This can be found on page 225	$f(x) = 3x g(x) = x^{2}$ Find f(g(x)) This is $3x^{2}$ Find g(f(x)) This is $(3x)^{2}$ which is the same thing as $9x^{2}$		
I can maximize the volume of an open top box given a single piece of paper (material). This was another major focus. You should be very good at writing any equation to describe this situation.	Note: You should be able to maximize the volume, write the equation and find the zeros in LESS than 10 minutes		
I can solve an absolute value equation Example of this is solving $6= x-2 $	Extra Examples: 18= 3 2 <i>x</i> - 3 -24		

I can find the x intercept of any of our 6 parent functions by using algebra or the graphing calculator to solve 0=f(x)	Extra Examples: $0=3(x-2)^3 -4$ $0 = 2(x-3)^2 -6$		
I can find the y intercept of any function. This is done by entering the function into your calculator and doing VARS(0) The notation for this is f(0)			

Extra Review problems that are good:

Page 234 #4-8

Page 229 #6

Page 229 #2

Page 228 #1