Review \#3 for the End of Year Final

I can use the zero product property:

The zero product property say to equate your factors to zero and solve the equation. The solution that you get from those equations are the zeros, roots, solutions, or x intercepts. Those all mean the same thing.

Find the zero's of the following function:
Key point: Zero's mean the same thing as x intercepts.
Key point: We find x intercepts by factoring the function and then using the zero product property.

1) $f(x)=\left(x^{2}-25\right)(x-6)$
2) $f(x)=x^{3}-7 x^{2}+12 x$
3) $f(x)=x^{2}+11 x+18$
4) If you have a function $f(x)=x^{2}-9 x+20$ and the fact that this function factors to $f(x)=(x-5)(x-4)$, then what must be true about the value of $f(5)$?
5) If $f(x)=x^{3}-8 x^{2}+5 x+50$ and $(x-5)$ is a factor of the polynomial function, then what can you say about $f(5)$?

6) I can graph and describe the behavior of the function:

Key point: describing the behavior means finding all important points about the graph. Those are x intercepts, y intercepts, vertical asymptote, horizontal asymptote, end behavior, local maximum, local minimum, vertex, maximum, minimum, intervals where $f(x)$ is positive, intervals where $f(x)$ is negative...

Graph the following and describe as much as you can as stated above:
a) $f(x)=x(3-x)(x-4)(x-5)$
b) $f(x)=\frac{3 x-2}{x^{2}-36}$
6) I can use my calculator to locate zero's of a function. Use your graph and table feature to locate the zero's of the following functions:
a) $y=x^{3}-5 x^{2}-18 x+72$
b) $y=x^{3}-8 x^{2}+5 x+50$
7) I can add rational expressions. Add the following expressions
$\frac{x+4}{2 x}+\frac{x^{2}+4}{6 x^{2}}$
b) $\frac{x+5}{x+2}+\frac{1}{x}$
8) Write the equations for the functions that are shown:

Graph the following functions and answer the question on which x interval is $f(x)$ positive?
9) $f(x)=x(4-x)(5+x)$
10) $f(x)=\frac{x^{2}+2 x-3}{x^{2}-2 x-3}$

