\qquad

Date \qquad

Advanced Algebra

Unit 4: Quadratics

Homework Week \#1

Please start to read in your Green book 360 through 389

Everybody should be able to do all problems involving Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Monday 12/3/2018 : "I can move between the forms of a quadratic". Fill in the missing forms:

General Form	Factored Form	Vertex Form
$x^{2}+14 x+45$		
	$8(x-3)(x+6)$	
		$(x-2)^{2}-4$

For the following problems, factor and use the mid- point method to find the x intercepts, vertex and y intercept. Make a sketch of each graph:

1) $y=x^{2}+14 x+40$
2) $f(x)=x^{2}-4 x-32$
3) $f(x)=x^{2}+10 x+24$

Tuesday 12/4/2018: "I can move between the forms of a quadratic" Fill in the missing forms:

General Form	Factored Form	Vertex Form
$6 x^{2}+14 x+8$		$3(x-2)^{2}-5$
	$4(x-10)(x+4)$	

Solve by using the quadratic formula $y=3 x^{2}-5 x+1$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The x values or the roots or answers are: \qquad and \qquad

Review from Unit 2:

Sketch the following parabolas. Remembering your shifts that we talked about in Unit 2 and that the parent graph of $y=x^{2}$ is a parabola though (0,00 with a 1-1 relationship.
a) $f(x)=2(x-3)^{2}+5$
b) $y=(x-2)^{2}$
c) $f(x)=2 x^{2}+5$
d) $y=3 x^{2}$
e) $y=-(x+4)^{2}$
f) $y=x^{2}+4$

Wednesday 12/05/2018" I can find the x intercepts, vertex, and y intercept. I can do this by finding the roots. Once I find the roots, I can add the roots together and divide by 2 . This will give me the x coordinate of the vertex or the middle of the parabola. Then I can do VARS(middle) to get the corresponding y value.

General Form	Roots	Vertex	Y intercept	Vertex Form
$x^{2}+14 x+40$				
$x^{2}-4 x-32$				
$x^{2}+10 x+24$				

Thursday 12/06/2018 " I can write the equation of a parabola"

1) A parabola touches the x axis at 3 and passes through the point ($-2,25$). Write the equation in both vertex and standard form:

Vertex form \qquad
General form \qquad
2) A parabola cuts the y axis at -240 and has roots at 6 and -10
3) A parabola has roots at 6 and -12 and passes through the point $(7,95)$
4) A parabola has a x coordinate of the vertex at 3 . One of the roots is 10 . It passes through the point (9,-26)

