Name \qquad
Date \qquad

Advanced Algebra

Unit 4: Quadratics

Homework Week \#2

Please start to read in your Green book 360 through 389

Learning Target: I can solve a quadratic with the quadratic formula and I can write the equation of a parabola given information.

Monday 12/10/18
Solve the following with the quadratic formula:
Key point: To Solve a quadratic you must get everything to 1 side. You want the quadratic set equal to zero. You can then use the quadratic formula which is provided below.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

a) $x^{2}-4 x-3=0$	b) $x^{2}+6 x+7=0$	c) $x^{2}+1=4 x$
d) $x^{2}+4 x=1$	e) $x^{2}-4 x+2=0$	f) $2 x^{2}-2 x-3=0$

1) A parabola touches the x axis at 3 and passes through ($-2,25$). Write the equation in vertex form. Then put it in General Form

Tuesday 12/11/2018: I can move between forms of a quadratic. Fill in the missing forms. You can use any of the methods that are available to you. Complete the square, adding the roots and diving by 2 , using the axis of symmetry formula. I can write the equation of a parabola given information:

General Form	Factored form	Vertex Form
$x^{2}-1 x-6$		
	$8(x-4)(x+12)$	
		$(x-4)^{2}-12$

Solve by using the quadratic formula: $y=4 x^{2}-4 x-24$

The x values of the roots or answers are \qquad and \qquad

1) A parabola "cuts" the x axis at $(1,0)$ and passes through a point $(6,60)$ and has an axis of symmetry at $\mathrm{x}=2.5$

Wednesday 12/12/2018" I can find the x intercepts, vertex and y intercept. I can do this by finding the roots. Once I find the roots, I can add them and divide by 2 . This will give me the middle. Then I can do VARS(middle) to get the corresponding y value. Don't forget about the equation of the axis of symmetry $\mathrm{x}=\frac{-b}{2 a}$ or completing the square. You chose what is easiest. These should be short problems!

General Form	Roots	Vertex	Y intercept	Vertex form
$x^{2}-6 x-9$				
$x^{2}-8 x+4$				
$x^{2}-12 x+34$				

Put the equation $y=x^{2}-20 x+96$ into vertex form (See your flow chart notes)

Thursday 12/13/2018 "I can write the equation of a parabola given information"

1) A parabola touches the x axis at 5 and passes through the point $(2,43)$. Write the equation in both vertex and general form:

Vertex form:
General Form
2) A parabola cuts the x axis at 3 and -6. IT passes through the point (5,44). Write the equation of this parabola in the following forms:
Vertex form:

General form:
3) A parabola has one root at 8 . The equation of the axis of symmetry is $x=2$. It passes through a given point of (2,-72). Write the equation of the parabola in the following forms:

4) A graph cuts the x axis at 4 and -10 and passes though $(6,64)$
5) A graph cuts the x axis at 8 and -12 and passes through ($6,-180$)

For the following problems, find the maximum or minimum values of the quadratics.
Remember the formula for the axis of symmetry of the parabola is given by $\mathrm{X}=\frac{-b}{2 a}$. This will give you the x coordinate of the vertex and then you can do VARS of that answer to get the corresponding y value.

1) $y=x^{2}-2 x$	2) $y=7-2 x-x^{2}$	3) $y=8+2 x-3 x^{2}$
4) $y=2 x^{2}+x-1$	5) $y=4 x^{2}-x+5$	6) $y=7 x-2 x^{2}$

