Name_____

Date_____

Advanced Algebra

Learning Targets

Unit 4 Quadratics Extra resource can be checking out the green advanced algebra book from the media center Videos are posted on www.washburngulliford.weebly.com

Learning Targets: This is an organized list of learning targets to help you prepare for the Unit Test. Please rank each topic using the provided scale.

If you are self assessing in the "I can do this topic with some help" or "I do not understand this topic at all" you want to make sure to get questions answered BEFORE the unit test.

If you are a low rank on a topic you should: look in your notes, do some research on the topic, look in <u>your green book in CHAPTER 4page 193-199, and Chapter 7 Page 361-398,</u> ask as a friend who has a higher rank on that topic than you, as a question to the teacher, go to the math lab during 4th hour lunch, look at the website videos...

Term	Where can I look up extra support on this learning target	l could teach this topic to others	l can do this topic on my own	I can do this topic with some help	l do not understand this topic at all
I know the three quadratic forms: General Form Vertex Form Factored Form	Page 371 y=ax ² =bx+c y=a(x-h) ² +k y=a(x-h)(x-k)				
I can easily move between the forms of a quadratic given information about 1 of the forms	Week #1 Homework and Week number 2 homework				

I can factor	See Extra Support Material		
with a	This is posted on the portal and on		
coefficient of 1	the website		
	Video is posted on		
	www.washburngulliford.weebly.com		
I can factor	See Extra Support Material		
with a			
coefficient of			
more than 1			
l can use zero	See Extra Support Material		
product	This is posted on the portal and on		
property	the website :		
	www.washburngulliford.weebly.com		
I can use finite	This is just subtracting. Look at page		
difference to	361		
find the degree			
and equation of			
a polynomial			
I can multiply	See Extra Support Materials		
two binomials			
using the box			
or foil			
I can find the	This can be done by using the		
zeros of a	quadratic formula or using the zero		
quadratic	product property after you factor the		
	problem.		
I can find the	This is a very big essential concept for		
vertex of a	the entire unit!		
quadratic	The process is to		
	1) Find the roots		
	2) Add the roots		
	3) Divide the sum by 2		
	4) Do VARS of that value to find		
	the corresponding y value of		
	the vertex		
I can write a	This is a very important concept that		
quadratic in	comes from out work in Unit 2. We		
Vertex form	first learned		
	f(x)=a(x-n)+κ		
	we should already know that h is a		
	horizontal shift and kis a vertical		
	from by just finding the vertex and		
	nom by just inding the vertex and		
	into this assential concent from unit		
	Z. $V=2/y h)\pm k$		
	1-a(x-1)+K		

L can complete	Page 377		
the square as a	This is a really good method if you		
une square as a	iust pood to put the form into vertex		
way to write a	formed to put the form into vertex		
quadratic into			
Vertex form	There is a video posted on		
	www.washburngulliford.weebly.com		
	This is a great way to solve any		
	quadratic if the coefficient is 1.		
	Example:		
	y=x ² +10x-18		
	y= (x ² +10x+)18 put 25		
	into the blanks		
	y=(x ² +10x+25)-25-18		
	y=(x+5) ² -43		
I can use the	Page 385 or see the extra support		
quadratic	material posted		
formula	We also practiced using the quadratic		
	formula on week #2 homework		
	$-h \pm \sqrt{h^2 - 4ac}$		
	$x = \frac{3 \pm \sqrt{3}}{2 \pi}$		
	24		
	There is a class video on		
	www.washburngulliford.weebly.com		
I know what	The discriminant is given by the		
the	formula h^2 -4(a)(c)		
Discriminant is	The following three things could		
and what it tall	happon:		
	$1) \text{if } h^2 \text{ App} \neq 0 \text{then there are}$		
me.	1) If D^2 -4ac< 0, then there are		
	2 conjugate pairs imaginary		
	roots		
	2) If b^2 -4ac= 0, then there is 1		
	real root called a double		
	root		
	 If b²-4ac>0, there are two 		
	different real roots		
l am aware	Page 391:		
than there is a	Note: IN this class we only deal with		
number set	an introduction to this topic. It will		
that deals with	be CONTINUED in other classes.		
complex	You need to know that		
numbers	i ² =-1		
	Your answers to an imaginary root		
	will always be in the form a+bi and		
	a-bi		
I know what a	Page 391		
conjugate pair	a+bi and a-bi		
is			
	Work the example $y=x^2-8x+22$		
	With the quadratic formula and you will		
	get 2 numbers in this form		

I can maximize	Very important application;		
the area of a	You should be able to do this with		
fence given a	both a 4 sided fence and a three		
fixed	sided fence that uses an existing wall		
perimeter. I	as one side.		
understand			
that this graph	This is the return of Rancher		
will be a	Gonzales. We have worked with		
parabola!	Rancher Gonzales many times during		
	this unit.		
I can maximize	We did this in Unit 2! It comes up		
the volume of a	again in Unit 4 and 5		
box	You should be mastering this		
I can write the	Example: A parabola has roots at 2		
equation of a	and -8. This parabola passes through		
parabola given	the point(3,44). Write the equation of		
the roots and a	this parabola.		
point	Y=a(x-2)(x+8)		
	44=a(3-2)(3+8)		
	44=11a		
	A=4		
	So the equation is :		
	Y=4(x-2)(x+8) Factored		
	Y=4(x ² +6x-16) or 4x ² +24x-64 General		
	$Y=4(x+3)^2-100$		
	There is a video posted on		
	www.wasburngulliford.weebly.com		
I can write the			
equation of a			
parabola given			
the axis of			
symmetry, one			
root and a			
point			