## Advanced Algebra

## Unit 10 Assignment \#23 Double Angle Formulas

$\operatorname{Sin} 2 x=2 \sin x \cos x$
$\operatorname{Tan} 2 \mathrm{x}=\frac{2 \tan x}{1-\tan ^{2}}$

$$
\begin{aligned}
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& \cos 2 x=1-2 \sin ^{2} x
\end{aligned}
$$

I can use parametric equations ( Chapter8) to find horizontal distance.
A projectile is shot from the ground at 24 feet per second. The angle of launch is 18 degrees.
Draw the right triangle and use the sin and cosine functions to write the parametric equations.
Use your table to find how long it was in the air $\qquad$
What was the horizontal distance traveled $\qquad$

Another use of double angle would be to find the horizontal distance of a projectile that has an initial height of 0 .

The formula is Distance $=\frac{v^{2}(\sin (2 \boldsymbol{v})}{32}$

I can use a double angle formula to find the horizontal distance traveled of a projectile shot from ground.

1) A projectile is shot from the ground at an angle of $12^{\circ}$ with an initial velocity of 87 feet per second.

2) A projectile is shot from the ground at an angle of 20 with an initial velocity of 56 feet per second.
$\operatorname{Sin} 2 x=2 \sin x \cos x$
$\operatorname{Tan} 2 x=\frac{2 \tan x}{1-\tan ^{2}}$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\cos 2 x=2 \cos ^{2} x-1$
$\operatorname{Cos} 2 x=1-2 \sin ^{2} x$

I can use double angle formulas to solve Trig Equations.

1) $\operatorname{Cos}(2 x)=-1$
2) $\cos (2 x)-\cos x=0$
3) $\sin (2 x) \sin (x)=\cos (x)$
4) $\cos (2 x)=-2 \cos ^{2}(x)$
5) $\cot (x)=\tan (x)$
6) $\sin (2 x)+\sin (x)=0$
7) $2 \tan (x)=\tan (2 x)$
8) $\sin (2 x)=\tan (x)$
9) $\cos (2 x)-3 \sin (x)=2$
10) $\frac{3}{2} \tan (2 x)=2$
