

Name

Learning Targets: This is an organized list of learning targets to help you prepare for the Unit Test. IF YOU ARE GOING TO RE-TAKE a Unit test, you need to completely fill this out. It should probably take you a week from when you first received your test back to study and write your examples and problems down. You need to fill out the learning targets if you are going to RE-TAKE a Unit test

If you are a low rank on a topic you should: Look in your notes, do some research on the topic, look in your green book Chapter 1 and 11, ask a friend who has a higher rank, ask a question of the teacher. If you are re-taking a test, you should probably check out the green book from the Media Center "Discovering Advanced Algebra".

	Example #1	Example #2	Example #3	Example #4
I identify a	U ₁ =18			
recursive sequence	$U_n = 2 + U_{(n-1)}$			
	n≥2			
	This is an example			
	of an arithmetic			
	Increasing			
	sequence.			
I can identify a	U ₀ = 4			
geometric	U _n = 3*U _(n-1)			
sequence	n≥1			
	This is an example			
	of an increasing			
	geometric sequence			
I can identify a	U ₀ =22			
shifted geometric	$U_n = .8 U_{(n-1)} + 22$			
sequence	n≥1			
	This is an example			
	of an increasing			
	shifted geometric			
	sequence.			
I can write a	2,4,6,8,			
recursive sequence	I know this this is			
for arithmetic,	an arithmetic			
geometric and	sequence. We have			
shifted	said in this class			
	that the starting			
	value can be			
	assigned U ₁			
	U ₁ = 2			
	U _n = 2+U(n-1)			
	n≥2			
	I know this is also			

Advanced Algebra Unit 1: Sequences and Series

	y=2x			
I can find a limit (Click it out on the calculator or use a table in sequence mode)	What is the limit for anything arithmetic?	What is the limit for anything geometric?	What is the limit of a shifted? $U_0= 18$ $U_n= .4*U_{(n-1)}+2$ $n\geq 1$ Click it out to find the limit	U_0 = 1023 U_n = .7* $U_{(n-1)}$ +18 n≥1 What is the limit?
l use sequence mode in my calculator (See Notes)				
I can apply sequences in real life. Depreciation Growth Changing the compounding period	I know that I should write all depreciation problems U ₀ (1-r) ^x	I know that all interest problems are U₀(1+r) ^x		
I can graph a sequence or match a recursive formula to a graph				
I can write a direct (or explicit) formula for arithmetic or geometric	U ₁ = 18 U _n = 4+U _(n-1) n≥2			

Advanced Algebra Unit 1: Sequences and Series

I can use summation notation	$\sum_{x=1}^{12} 4x - 3$ I know that term 1 is 1 and term 12 is 45 and the sums formula is Sn= $\frac{n(U1+Un)}{2}$ S12= $\frac{12(1+45)}{2}$ 276		
l can sum up an arithmetic sequence	Sum up the sequence 4,6,8,10,12,14,16,18 I know that U1=4 and that U8= 18 The sums formula is Sn = $\frac{n(U1+Un)}{2}$ Sn= $\frac{8(4+18)}{2}$ Sn= 88		
l can sum up a partial geometric sequence	DID NOT DO		
I can do financial applications	l made the examples for you. See below.		

I can do financial Applications:

- 1) You take out a loan for \$45,000. The APR on this loan is 6% compounded monthly. What will balance be on this loan in 5 years?
- 2) You take out a loan for \$45,000. The APR on this loan is 4% compounded monthly. You also make \$650 payments each month. What will the balance be in 1 year? How many months does it take for you to pay off this loan? What is the total amount that you paid over the life of the loan.
- 3) You buy a boat for \$55,000. The boat will depreciate 8% every year. What will the balance be in 4 years? What will the value be in 13 years? Does this have a limit?