\qquad

Date \qquad

Advanced Algebra

Unit 5: Polynomials

Assignment \#13

Learning Target: I can divide fractions

I know that to divide fractions I follow the following steps
a) Reciprocal the second
b) Multiply
c) Remember: Before I can do any canceling, I need to factor the problems completely. You must FACTOR before you can cancel!!

Example from Middle school: $\frac{6}{8} \div \frac{3}{20}$
Reciprocal the second and Multiple so you now have $\frac{6}{8} * \frac{20}{3}$ You can now REDUCE vertically or on a diagonal So you get $\frac{2}{2} * \frac{5}{1}$ Now that I am done Reducing, I will multiply straight across the top and straight across the bottom. This gives us an answer of $\frac{10}{2}$ We can now reduce this to just 5 .

We have already multiplied fractions in this class. We did that on Assignment \#5. After you FACTOR these problems, you the Reciprocal the second and Multiply. It turns into a previous assignment. There

1) $\frac{x^{2}+11 x+28}{(x-2)} \div \frac{x^{2}+5 x-14}{4 x-8}$	2) $\frac{x^{2}+8 x+12}{x^{2}-6 x} \div \frac{x^{2}-3 x-10}{2 x-12}$
3) $\frac{x^{2}+1 x-20}{x^{2}+2 x-8} \div \frac{x^{2}+17 x+30}{x^{2}-6 x-40}$	4) $\frac{x^{2}+8 x-20}{x^{2}-x-12} \div \frac{x^{2}+4 x-60}{x^{2}+3 x}$

is only the added step of Reciprocal the second and Multiply!!!!!

5) $\frac{x^{2}-4 x-12}{3 x^{2}-x} \div \frac{(x-6)}{x}$	6) $\frac{x^{2}-6 x-40}{8 x^{2}-4 x} \div \frac{x^{2}-8 x-20}{4 x}$	6) $\frac{x^{2}+7 x-30}{9 x^{2}-3 x} \div \frac{x^{2}-9}{3 x}$

Review: Write the equation of the following graph. Remember if a graph "Touches" the x axis that is called a double root. Any double root is written twice. So you would write ($x-a$) ($x-a$) if it touched at a.

Equation of Graph:	\#1	$\frac{5}{(m+3)}=\frac{-5}{(m-1)}$	\#2	$\frac{3}{(a-2)}=\frac{-5}{(a-10)}$	\#3	$\frac{4}{(a-8)}=\frac{6}{(a+5)}$
	\#4	$6=2$	\#5	4	\#6	$3 \mathrm{l}=\frac{4}{(x+1)^{11}}$

