\qquad

We introduced power rule derivative

As a way to find maximum

Date \qquad

Advanced Algebra

Unit 5 Polynomials: Assignment \#14

1) Re-write the following and show the long division process.

2) Find the Roots of the original polynomial

3) Sketch a graph of the polynomial

1) $x^{3}-5 x^{2}-2 x+24 \div(x+2)$	2) $\left(x^{3}-3 x^{2}-16 x-12\right) \div(x-6)$
3) $\left(x^{3}-12 x^{2}+12 x+80\right) \div(x-10)$	4) $\left(x^{3}-18 x^{2}+95 x-126\right) \div(x-9)$
5) $\left(x^{3}-x^{2}-21 x+45\right) \div(x+5)$	6) $\left(x^{3}-11 x^{2}+14 x+80\right) \div(x-8)$
7) $\left(4 x^{3}-4 x^{2}-9 x+9\right) \div(x-1)$	8) $\left(2 x^{3}+7 x^{2}-33 x-18\right) \div(x+6)$
9) $\left(x^{3}-8 x^{2}+4 x+48\right) \div(x-4)$	10) $\left(2 x^{3}-14 x^{2}-56 x-40\right) \div(x-10)$
11) $\left(6 x^{3}+8 x^{2}+x-6\right) \div(3 x-2)$	12) $\left(3 x^{3}+22 x^{2}+38 x+15\right) \div(x+5)$

Review: I can write the equation of a polynomial graph.

Write the equation of the following:

Review: I can complete the square:

$Y=x^{2}+8 x-16$

$$
y=2 x^{2}-6 x+18
$$

Review: Equation of Volume of Box given 12 by 18 piece of paper:

What is the equation to represent this volume of an open top box?

Now do the short cut only. Given a 9 by 8 piece of paper, Write the equation for the open top box

Multiply it out into standard form
Find the derivative
Use the quadratic formulax $=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
What is the x that produces the max volume? What is the max volume?

