Elementary Row Operations:

1) Interchange 2 rows
2) Multiply a Row by a Constant
3) Add Rows

Name \qquad
Advanced Algebra
Unit 6: Assignment \#16
Elementary Row Operations on 3 by 3 Day \#2
Translate the following 3 by 3 systems of equations into a Matrix and perform elementary row operations to solve the system.

Your Goal is to get the following:

1) $\left\{\begin{array}{c}x-y-2 z=3 \\ 0 x+2 y+3 z=8 \\ 0 x+0 y+z=2\end{array}\right.$
2) $\left\{\begin{array}{c}x-2 y+z=7 \\ 4 x+2 y-z=3 \\ x+y-5 z=13\end{array}\right.$
3) $\left\{\begin{array}{c}2 x+y+z=-3 \\ 3 x-2 y+4 z=9 \\ x+2 y-2 z=-13\end{array}\right.$
4) $\left\{\begin{aligned}-3 x+y-2 z & =-11 \\ x-3 y+z & =5 \\ 2 x+2 y-z & =-2\end{aligned}\right.$
5) $\left\{\begin{aligned} x-y+2 z & =10 \\ -3 x+y-z & =-11 \\ 2 x-2 y+z & =11\end{aligned}\right.$
6) $\left\{\begin{array}{c}2 x+10 y+0 z=28 \\ x+3 y+4 z=22 \\ x+5 y-z=10\end{array}\right.$

$$
\text { 7) }\left\{\begin{array}{c}
x+y+z=4 \\
2 x-3 y+2 z=-12 \\
x+2 y+4 z=2
\end{array}\right.
$$

8) $\left\{\begin{array}{c}x+y+z=7 \\ 2 x+3 y+z=7 \\ 3 x+2 y-z=-12\end{array}\right.$
9) $\left[\begin{array}{ll}1 & -1 \\ 3 & -1\end{array}\right] *\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 \\ -6\end{array}\right]$

Let $A=\left[\begin{array}{ll}1 & -1 \\ 3 & -1\end{array}\right]$ then
$\left[\mathrm{A}^{-1}\right]^{*}[\mathrm{~A}]^{*}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\mathrm{A}^{-1}\right]^{*}\left[\begin{array}{c}2 \\ -6\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\mathrm{A}^{-1}\right] *\left[\begin{array}{c}2 \\ -6\end{array}\right]$
The above shows the proper notation that you need to show when you are solving a matrix system completely. Now you should go on an actually find the inverse so you can solve the $\mathbf{2}$ by 2.
$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] *\left[\begin{array}{ll}1 & -1 \\ 3 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Now get your 2 systems of equations and solve for a, b, c, d which will be the inverse Matrix.

Then finally multiply your inverse by $\left[\begin{array}{c}2 \\ -6\end{array}\right]$
2) Now you do on your own completely.

$$
\left\{\begin{array}{c}
x-y=-1 \\
x+y=7
\end{array}\right.
$$

Translate into a Matrix First!! Look above. Show all the work. This is an exact problem on the test. You need to show everything

