\qquad

Date \qquad

Advanced Algebra

Unit 8: Probability Laws Assignment \#17

Using the Laws of Probability and Conditional Probability

1) The probability of A or B can be given by the following rule:
$\mathrm{P}(\mathrm{A} \cup B)=P(A)+P(B)-P(A \cap B)$
2) Mutually Exclusive Events: 2 events that cannot occur at the same time. This can be demonstrated by the following rule:
$\mathrm{P}(\mathrm{A} \cap B)=0$ so from our rule above we can say that if 2 events are mutually exclusive we have $\mathrm{P}(\mathrm{A} \cup B)=P(A)+P(B)$
3) Conditional Probabilities:
$A \mid B$ is used to represent that "A occurs knowing that B has occurred" $A \mid B$ is read as " A given B "

If A and B are events then $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ From this equation it follows that
$\mathrm{P}(\mathrm{A} \cap B)=P(A \mid B) * P(B)$ or $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A})$
4) Independent Events- A and B are independent events if the occurrence of each one of them does not affect the probability that the other occurs. This can be shown with the following
A and B are independent events if $P(A \cap B)=P(A) * P(B)$

Practice Problems:

1) Events A and B have probabilities $P(A)=.4, P(B)=.65$ and $P(A \cup B)=.85$
a) Draw the Venn Diagram to represent this scenario
b) Calculate $P(A \cap B)$
(2marks)
c)State with support if A and B are Independent
d) State with a reason if A and B are mutually exclusive
(2marks)
2) Events A and B have probabilities $P(A)=.52, P(B)=.72$ and $P(A \cup B)=.92$
a) Draw the Venn Diagram to represent this scenario (2 marks)
b) Calculate $P(A \cap B)$
c)State with support if A and B are Independent
(2marks)
d) State with a reason if A and B are mutually exclusive

Practice Problems:

1) Events A and B have probabilities $P(A)=.74, P(B)=.27$ and $P(A \cup B)=.89$
a) Draw the Venn Diagram to represent this scenario (2 marks)
b) Calculate $P(A \cap B)$
(2marks)
c)State with support if A and B are Independent
(2marks)
d) State with a reason if A and B are mutually exclusive
2) Events A and B have probabilities $P(A)=.58, P(B)=.72$ and $P(A \cup B)=.98$
a) Draw the Venn Diagram to represent this scenario (2 marks)
b) Calculate $P(A \cap B)$
(2marks)
c)State with support if A and B are Independent
(2marks)
d) State with a reason if A and B are mutually exclusive
3) If $P(A)=.6 P(A \cup B)=.95$ and $P(A \cap B)=.32$, find $P(B)$

Answer to $P(B)$ here:
4) $P(X)=.85 \quad P(Y)=.40$ and $P(X \cup Y)=.99$ find $P(X \cap Y)$

Answer to $\mathrm{P}(\mathrm{X} \cap Y)$ here
5) Tickets numbered 1 to 20 are placed in a hat, and one ticket is chosen at random. Let A be the event that the number drawn is greater than 14 , and B be the event that the number drawn is less than 12.

Draw a Venn Diagram

Find $P(A) \quad P(B) \quad P(A \cup B) \quad$ Are A and B Mutually exclusive?
6) In a class of 130 students, 108 like bananas, 58 like pineapple, and 2 dislike both fruits. A student is randomly selected.

Draw the Venn Diagram

Find the probability that
a) dislikes pineapple given that he or she likes bananas
the student likes both fruits $\mathrm{P}(B \cap P)$

Likes bananas given than he or she likes pineapple $P(B \mid P)$

