$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Should be programmed in your calculator. If not, you need to do it by hand.

Name \qquad
Date \qquad
Unit 9- Assignment \#10
Projectile Motion and Review
Put all problems on a separate piece of paper. You need to draw pictures and write and solve your equations

1) A ball rolls off the end of a table with a horizontal velocity of 1.5 feet/second. The table is 2.75 feet high.
a) Draw a picture of the situation
b) Write the parametric equation for the x direction
c) Write the parametric equation for the y direction
d) Solve your y equation to find total time.
e) Use your time to substitute into your x equation to find how far away it landed.
2) A ball rolls of the edge of a 12 meter cliff at a velocity of 2 meters per second.
a) Draw a picture of the situation.
b) Write the parametric equation for the x direction
c) Write the parametric equation for the y direction
d) Solve your y equation to find the total time it was in the air.
e) How far is the ball from the cliff at this time?
3) Carolina hits a baseball so that it travels at an initial speed of 120 feet/second and at an angle of 30 degrees above the ground. If her bat contacts the ball at a height of 3 feet above the ground, how far does the ball travel horizontally before it hits the ground?
a) Draw the right triangle representation of this situation.
b) Write the parametric equation for the x direction
c) Write the parametric equation for the y direction
d) Solve your y equation (should use the quadratic formula) to find the total time it was in the air.
e) How long does it take to get to its maximum height?
f) What is the maximum height?
g) What is the horizontal distance that it traveled given this time.
4) Jo Jo the amazing circus boy is a human cannonball. He is fired out of a canon 20 feet above the ground at a speed of 60 feet per second. The cannon is at an angle of 50 degrees. His net hangs 5 feet above the ground. Where (horizontal position) does his net need to be positioned so that he will land safely?
a) Draw the right triangle representation of this situation.
b) Write the parametric equation for the x direction.
c) Write the parametric equation for the y direction.
d) Solve your y equation (should be using the quadratic formula) to find the total time Jo-Jo was in the air. .
e) What was the maximum height that Jo-Jo reached (vertex).
f) How many seconds does it take Jo-Jo to get to the maximum height
g) Where does he need to put the net (horizontal distance) so he lands on it.
5) Chuck the golfer swings a 7-iron club with a loft of 28 degrees and an initial velocity of 95 feet/second on level ground.
a) Draw the right triangle representation of this situation.
b) Write the parametric equation for the x direction
c) Write the parametric equation for the y direction.
d) Solve your y equation to find the total time
e) What is the maximum height
f) What is the horizontal distance the ball travels.
6) A ship is on a bearing of 315 traveling at 30 knots. ($1 \mathrm{knot}=1.15078 \mathrm{~m} / \mathrm{h}$).
a) Draw your picture
b) Write your parametric equations
c) How long before the ship is 500 miles West of where it started
d) How far north is it
e) Hence, what is the total distance traveled by the ship.
